a2 United States Patent

US009076003B2

(10) Patent No.: US 9,076,003 B2

Raskin et al. 45) Date of Patent: Jul. 7, 2015
(54) METHOD AND APPARATUS FOR (56) References Cited
TRANSPARENTLY ENCRYPTING AND US. PATENT DOCUMENTS
DECRYPTING COMPUTER INTERFACE -
DATA 4,508,170 A 7/1986 Piosenka et al.
5,191,542 A 3/1993 Murofushi
(71) Applicant: JANUS TECHNOLOGIES, INC., Half 5,724,027 A 3/1998 Shipman et al.
Moon Bay, CA (US) 5,946,469 A 8/1999 Chidester
’ 6,061,794 A 5/2000 Angelo et al.
. 6,088,802 A 7/2000 Bialick et al.
(72) Tnventors: Sofin Raskin, Los Altos, CA ((U?; 6,414,523 B1* 7/2002 Yoshizakicccor..... 327/112
Alexander Rezinsky, Katzir (IL); .
Joshua Porten, Austin, TX (US); (Continued)
Michael Wang, Taipei (TW) FOREIGN PATENT DOCUMENTS
(73) Assignee: JANUS TECHNOLOGIES, INC., Half EP 2517144 7/2011
Moon Bay, CA (US) EP 2407905 1/2012
.)) o) (Continued)
(*) Notice: Subject. to any dlsclalmer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by O days. Garfinkel, “Terra: A Virtual Machine-Based Platform for Trusted
Computing”, ACM SOSP, Proc. of the ACM Symp. on Operating
(21) Appl. No.: 13/971,632 system Printciples, Oct. 22, 2003, pp. 193-206.
. (Continued)
(22) Filed: Aug. 20,2013
. L Primary Examiner — Michael S McNally
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw
US 2015/0058637 Al Feb. 26, 2015 Pittman LLP
(51) Int.ClL (57) ABSTRACT
HO4L 29/06 (2006.01) In general, embodiments of the invention include methods
GOGF 21/60 (2013.01) and apparatuses for securing otherwise unsecured computer
interfaces by performing transparent data encryption and
GOGF 21/83 (2013.01) Yy P £ P Typ
(52) US.CL decryption. According to certain transparency aspects, the
CPC o GOGF 21/602 (2013.01); GO6F 21/606 ~ Sneryption and decryption functionality of the invention do
(2013.01); GOGF 21/83 (2013.01); HOAL not require any chgnges to the. software layers such as file
63/0428 (2013.01) systems., device dnve.rs, opgratmg systems, or.apphcatlons.
(58) Field of Classification Search Embodiments of the invention offload encryption key man-

CPC GOG6F 21/602; GOG6F 21/606; GOGF 21/83;

HO4L 63/0428
USPC ittt 713/189
See application file for complete search history.

agement to a centralized key management system that can be
remotely located from the secured computer. Alternative
embodiments perform key management locally.

22 Claims, 13 Drawing Sheets

Host 120 100
102 /_
Communication
Channel 108
s Remote
S becu:e » Management
ubsystem Status Messages 112 System
104 106
Control Messages 114
Device Device
110-1 110-2

US 9,076,003 B2

Page 2
(56) References Cited 2004/0199879 Al 10/2004 Bradfield
2005/0240892 Al 10/2005 Broberg et al.
U.S. PATENT DOCUMENTS 2006/0282652 Al* 12/2006 El-Haj-mahmoud etal. 713/1
2007/0088959 Al 4/2007 Cox et al.
6,457,164 Bl 9/2002 Hwang et al. 2007/0255963 Al 11/2007 Pizano et al.
6,507,914 Bl 1/2003 Cain et al. 2008/0091833 Al 4/2008 Pizano et al.
6,546,491 Bl 4/2003 Challener et al. 2008/0247540 Al 10/2008 Ahn et al.
6,594,780 Bl 7/2003 Shen et al. 2008/0263658 Al 10/2008 Michael et al.
6,668,326 Bl 12/2003 Sella et al. 2009/0013111 Al 1/2009 Berland et al.
6,725,438 B2 4/2004 van Ginneken 2009/0033668 Al 2/2009 Pederson et al.
6,782,424 B2 8/2004 Yodaiken 2009/0212844 Al 8/2009 Darmawan et al.
6,820,160 Bl 11/2004 Allman 2010/0024004 Al 1/2010 Boegelund et al.
6,922,817 B2 7/2005 Bradfield et al. 2010/0192230 Al 7/2010 Steeves et al.
7.120,892 B1 10/2006 Knol et al. 2010/0201400 Al 8/2010 Nardone et al.
7,149,992 B2 12/2006 Chang et al. 2010/0228993 Al* 9/2010 Suzukiccooovvvenrennn. 713/189
7,240,303 Bl 7/2007 Schubert 2011/0102443 Al 5/2011 Dror et al.
7320071 Bl 1/2008 Friedman et al. 2011/0131423 Al 6/2011 Ponsini
7,330,891 B2 2/2008 Yodaiken 2011/0258460 Al 10/2011 Pizano et al.
7,337,100 Bl 2/2008 Hutton et al. 2012/0017197 Al 1/2012 Mehta et al.
7,340,700 B2 3/2008 Emerson 2012/0192129 Al 7/2012 Bowers
7,350,204 B2 3/2008 Lambert et al. 2013/0067534 Al 3/2013 Soffer
7,396,257 B2 7/2008 Takahashi 2013/0097430 Al 4/2013 Mittelstadt et al.
7469343 B2 12/2008 Ray 2013/0212671 Al 82013 Wang et al.
7,478,235 B2 1/2009 England et al. 2013/0238908 Al 9/2013 Pizano
7,516,217 B2 4/2009 Yodaiken
7,635,272 B2 12/2009 Poppe FOREIGN PATENT DOCUMENTS
7,677,065 Bl 3/2010 Miao
7,822,994 B2* 10/2010 Hamaguchi 713/193 EP 2677452 12/2013
7,962,755 B2 6/2011 Pizano et al. KR 10-1118826 4/2012
7,987,497 Bl 7/2011 Giles et al.
8,161,524 B2* 4/2012 Ohetal. ..ccccooevvvveirennnne 726/2 OTHER PUBLICATIONS
8,402,529 Bl 3/2013 Green et al.
8,429,419 B2 4/2013 Endrys Landau, et al., “SlitX: S;lit Guest/Hypervisor Execution on Multi-
8,566,934 B2 10/2013 Srl_Vastava Core”, 3" Workshop of 10 irtualization, Jun. 14, 2011, pp. 1-7.
8,606,971 B2 12/2013 Cain et al. . . L
8.627.106 B2 12014 Pizano et al. International Search Report and Written Opinion issued Nov. 28,
2002/0007456 AL 1/2002 Peinado ef al. 2014 in corresponding PCT/US2014/051694.
2002/0069396 Al 6/2002 Bhattacharya et al.
2004/0003262 Al* 1/2004 England et al. 713/189 * cited by examiner

U.S. Patent Jul. 7, 2015 Sheet 1 of 13 US 9,076,003 B2
Host 120 100
102 /_
Communication
Channel 108
S Remote
S becu;e Management
ubsystem Status Messages 112 System
104 106
<
Control Messages 114
Device Device
110-1 110-2

FIG. 1

U.S. Patent

Jul. 7, 2015 Sheet 2 of 13
USB
Host
202
UsSB
Hub
2121
UsSB UsSB
Hub Device
212-2 210-1
UsSB UsSB
Device Hub
210-2 212-3
UsSB UsSB
Device Device
210-3 210-4
FIG. 2

(PRIOR ART)

US 9,076,003 B2

U.S. Patent Jul. 7, 2015 Sheet 3 of 13 US 9,076,003 B2

USB Host USB Host
302-3 3024 30

Communication Channel 108-2

Secure USB Remote
Subsystem Magagtement
ystem
304-2) frie

USB Hub USB USB Host USB Host
) 302-1 302-2 o
312-1 Device Communication
310-3 Channel
108-1
Secure USB
UsB USB Hub
Device 3122 Subsystem
310-4 304-1
usB usB
Device Device
UsB USB
310-5 310-6 Device Device
310-1 310-2

FIG. 3

U.S. Patent Jul. 7, 2015 Sheet 4 of 13 US 9,076,003 B2

UsSB
Host 302

| — Unencrypted data

-

Secure USB secure communication channel
Subsystem

304

PCB or SoC
USB
< Encrypted data

USB Device

310

Physical Storage
Device

FIG. 4A

U.S. Patent Jul. 7, 2015 Sheet 5 of 13 US 9,076,003 B2

UsSB
Host

302 Unencrypted data

. —

-

Secure USB secure communication
Subsystem channel
304

Encrypted data

USB Device
310

Physical Storage
Device

PCB

FIG. 4B

U.S. Patent Jul. 7, 2015 Sheet 6 of 13 US 9,076,003 B2

SATA
Initiator 502 500

Secure Remote
SATA Management
Subsystem System
502 106

SATA Expander SATA
512 Target

510-1

SATA SATA

Target Target
510-2 510-3

FIG. 5

U.S. Patent

Software

Hardware

Jul. 7, 2015

Sheet 7 of 13

Applications 650

Operating System 648

Device
Driver 644

File System
646

USB Host 602

Encryption Layer 604

USB Device 610

Physical Storage Device

FIG. 6

US 9,076,003 B2

Unencrypted data

Encrypted data

USB Connection 642

U.S. Patent Jul. 7, 2015 Sheet 8 of 13 US 9,076,003 B2

To USB
Host
Control Status
Messages Messages
114 112
USB
Bridge Configuration / System
Logic Control 720 Controller
702 704
To USB
Device

FIG. 7

U.S. Patent Jul. 7, 2015 Sheet 9 of 13 US 9,076,003 B2

o |_-812-U
Transceiver
Controller

CRC /806'U

Gen

L

822-U

[_Y __802-D
10
RxPacket
Parser Keys
820
808
N
818-D Encrypt —— 816 Configuration /
\ Encryption Encryption Key | Control 720
Y___I7— —| Controller Cache Controller
~
804 818
/
T ° || Configuration/Control 720
Link —
Controller
818-U
[810
/
Decrypt /802-U
||
10
RxPacket
Parser
822-D\
806-D\ TRG
Gen
812-D
o FIG. 8
10

Transceiver
Controller

U.S. Patent Jul. 7, 2015 Sheet 10 of 13 US 9,076,003 B2

Initialization
From USB Link] Vector
Controller Encryption
Controller
816
Control)
Signals Encryption
Block 808 /
Decryption
Block 810
Encryption Key 818
Encryption Key
Cache Controller
I
Encryption
Key Cache Orig Dala — | 3 EncryptedData
Orig Dat
820 (EncryptedData) (Orig Data)

FIG.9

U.S. Patent

Encryption
Controller
816

Jul. 7, 2015 Sheet 11 of 13 US 9,076,003 B2
. Serial Num
Control Signals
“w_—" LUN
L, LBA
1
L Block Offset
Y | Seed
|—| Key Gen |
o2
Initialization Vector Key
AES 128
1054
Streaming
Key
0—— Y128
Encr Enable
___ /[~ 1056
1058
A N

N) 4 N

Z ;f\ Z »

Vd '\J /7 [l

Orig Data EncryptedData
(EncryptedData) XOR (Orig Data)

FIG. 10

U.S. Patent Jul. 7, 2015 Sheet 12 of 13 US 9,076,003 B2

Original Header Original Payload CRC __— 1102
1106 1108-A 1110-A
A 4 A
Encryption CRC
Module Generator
808 806
y A 4 y
Original Header Encrypted Payload CRC |— 1104
1106 1108-B 1110-B

FIG. 11

U.S. Patent Jul. 7, 2015 Sheet 13 of 13 US 9,076,003 B2

Serial Num
LUN
LBA
| Block Offset
Encryption I Key Gen <
Controller
Seed
Key
AES 128 >
Orig Data —» EncryptedData

FIG. 12

US 9,076,003 B2

1
METHOD AND APPARATUS FOR
TRANSPARENTLY ENCRYPTING AND
DECRYPTING COMPUTER INTERFACE
DATA

FIELD OF THE INVENTION

A system and method for securing computer systems with
otherwise non-secure /O interfaces. Embodiments of the
invention implement security functions such as transparent
data encryption and decryption for otherwise unsecure com-
puter interfaces such as USB.

BACKGROUND OF THE INVENTION

Conventional computing devices typically include one to
many conventional types of input/output (I/O) ports for com-
municating with connectable external devices such as mice,
keyboards, wireless modems, etc.

However, the specifications for many I/O interfaces, such
as USB, SAS, SATA, Firewire, PCI Express, Hypertransport,
Thunderbolt, etc. have no provision for authenticating
attached devices or encrypting their traffic. One way to secure
communication in such devices is by changing software lay-
ers (drivers, applications). This is impractical to implement
due to variety of different software stack implementations
and lack of interoperability. This is the main reason why this
approach did not gain a widespread adoption. Another option
is to encrypt the entire file system. This approach also suffers
from lack of interoperability. Both approaches have another
disadvantage: the key to perform encryption is stored in the
same system, which weakens overall security. Examples of
prior art approaches include U.S. Patent Application Number
2008/0247540, U.S. Pat. No. 7,469,343 and EP Application
No. EP240790.

Meanwhile, there are a number of applications that would
benefit greatly from data encryption, such as storing sensitive
data on USB mass storage devices. Accordingly, a need
remains for an efficient method for encrypting and decrypting
data on otherwise unsecure interfaces such as USB.

SUMMARY OF THE INVENTION

In general, embodiments of the invention include methods
and apparatuses for securing otherwise unsecured computer
interfaces by performing transparent data encryption and
decryption. According to certain transparency aspects, the
encryption and decryption functionality of the invention do
not require any changes to the software layers such as file
systems, device drivers, operating systems, or applications.
Embodiments of the invention offload encryption key man-
agement to a centralized key management system that can be
remotely located from the secured computer. Alternative
embodiments perform key management locally.

In accordance with these and other aspects, a system for
transparently encrypting and decrypting computer system [/O
data according to embodiments of the invention includes an
1/0O interface, a host processor including a host for sending
and receiving data via the I/O interface, and a secure sub-
system interposed between the /O interface and the host
processor that transparently encrypts and decrypts the data.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects and features of the present inven-
tion will become apparent to those ordinarily skilled in the art

15

20

40

45

50

55

65

2

upon review of the following description of specific embodi-
ments of the invention in conjunction with the accompanying
figures, wherein:

FIG. 1 is a block diagram illustrating an example sub-
system for securing /O communications according to
embodiments of the invention;

FIG. 2 is a block diagram illustrating existing USB /O
communications;

FIG. 3 is a block diagram illustrating an example sub-
system for securing USB I/O communications according to
embodiments of the invention;

FIG. 4A is a block diagram further illustrating an example
implementation for the secure USB subsystem shown in FIG.
3;

FIG. 4B is a block diagram further illustrating another
example implementation for the secure USB subsystem
shown in FIG. 3;

FIG. 5 is a block diagram illustrating an example sub-
system for securing SATA I/O communications according to
embodiments of the invention;

FIG. 6 is a block diagram illustrating how example secure
USB subsystems according to embodiments of the invention
are included in the data flow of typical hardware and software
layers;

FIG. 7 is a block diagram further illustrating an example
secure USB subsystem that can implement the subsystem
shown in FIG. 6;

FIG. 8 is a block diagram illustrating an example configu-
ration of bridge logic that can be included in a subsystem such
as that shown in FIG. 7;

FIG. 9 is a block diagram illustrating an encryption or
decryption layer that can be included in the bridge logic
shown in FIG. 8;

FIG. 10 is a block diagram further illustrating an example
implementation of encryption or decryption logic such as that
included in the layer of FIG. 9;

FIG. 11 is a block diagram illustrating the encryption of
USB packets according to embodiments of the invention; and

FIG. 12 is a block diagram further illustrating another
example implementation of encryption or decryption logic
such as that included in the layer of FIG. 9.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention will now be described in detail with
reference to the drawings, which are provided as illustrative
examples of the invention so as to enable those skilled in the
art to practice the invention. Notably, the figures and
examples below are not meant to limit the scope of the present
invention to a single embodiment, but other embodiments are
possible by way of interchange of some or all of the described
or illustrated elements. Moreover, where certain elements of
the present invention can be partially or fully implemented
using known components, only those portions of such known
components that are necessary for an understanding of the
present invention will be described, and detailed descriptions
of other portions of such known components will be omitted
so as not to obscure the invention. Embodiments described as
being implemented in software should not be limited thereto,
but can include embodiments implemented in hardware, or
combinations of software and hardware, and vice-versa, as
will be apparent to those skilled in the art, unless otherwise
specified herein. In the present specification, an embodiment
showing a singular component should not be considered lim-
iting; rather, the invention is intended to encompass other
embodiments including a plurality of the same component,

US 9,076,003 B2

3

and vice-versa, unless explicitly stated otherwise herein.
Moreover, applicants do not intend for any term in the speci-
fication or claims to be ascribed an uncommon or special
meaning unless explicitly set forth as such. Further, the
present invention encompasses present and future known
equivalents to the known components referred to herein by
way of illustration.

According to general aspects, embodiments of the inven-
tion enable securing otherwise unsecured I/O communica-
tions. According to one aspect, embodiments of the invention
implement encrypting and decrypting of data sent over an [/O
connection. According to certain additional aspects, the secu-
rity functions performed by embodiments of the invention
can be logically transparent to the upstream host and to the
downstream device.

FIG. 1 is a system level block diagram of a management
system 100 according to embodiments of the invention. As
shown, system 100 includes a managed secure computer 120
comprising a Host 102, Secure Subsystem 104, and two
directly attached devices 110-1 and 110-2.

There are many possible configurations of system 100, host
102, subsystem 104 and attached devices 106 that all fall
within the scope of the invention, and the present invention is
not limited to any particular configuration. In one non-limit-
ing example configuration, secure computer 120 is a standa-
lone computer system, similar to a conventional desktop,
laptop or pad computer. In such an example, host 102 is
implemented by a CPU (e.g. x86), a conventional operating
system such as Windows and associated device driver soft-
ware and can further include I/O interfaces such as USB
hosts, SATA hosts, etc. In accordance with certain aspects of
the invention, in this example, the operation and functionality
of subsystem 104 is completely transparent to the host 102
and associated operating system and application software.
Moreover, the operating experience of secure computer 120
by a user is identical to the experience of a conventional
desktop, laptop or pad computer, apart from the security
functionality of the present invention. So while the applica-
tion software that can run on the computer is virtually unre-
stricted, use of devices 106 is strictly controlled by subsystem
106 which enforces security policies as will be described in
more detail below.

In these and other embodiments, subsystem 104 is prefer-
ably an embedded system. As such, it runs a designated soft-
ware system furnished together with an embedded processor,
and cannot be modified by the end-user of the computer under
any circumstances. According to aspects of the present inven-
tion, subsystem 104 is responsible for parsing and transpar-
ently encrypting or decrypting data streams.

An example architecture for implementing subsystem 104
together with host 102 is described in co-pending application
Ser. No. 13/971,651, the contents of which are incorporated
by reference herein. Those skilled in the art will understand
how to implement the principles of the present invention in
various configurations of secure computer 120 after being
taught by the present disclosure.

Devices 110 can include internal and external storage
devices such as disk drives, thumb drives, memory cards, etc.,
etc. that use interfaces such as SATA and USB. The number
and type of peripherals can depend on the particular form
factor of secure computer 120.

Devices 106 can also include network access interfaces
such as Ethernet, Firewire, etc. Various aspects of performing
security functionality in secure computer 120 that can be
adapted for use in, and/or practiced together with, the present
invention are described in more detail in co-pending applica-

15

20

25

35

40

45

50

55

4

tion Ser. No. 13/971,582, the contents of which are incorpo-
rated herein by reference in their entirety.

FIG. 1 further shows a Remote Management system 106
coupled to secure subsystem 104 of secure computer 120 by
acommunication channel 108. FIG. 1 also shows the different
message types that can be sent over a Communication Chan-
nel 108, specifically status messages 112 from secure sub-
system 104 to remote management system 106 and control
messages 114 from remote management system 106 to secure
subsystem 104.

Although FIG. 1 shows remote management system 106
coupled to only one secure subsystem 104, it should be appar-
ent that one or more additional secure subsystems 104 may be
similarly coupled to remote management system 106.

Channel 108 can be implemented in various ways, possibly
depending on the number and type of devices to be managed
by system 106. Channel 108 can be a separate direct point-
to-point link between system 106 and subsystem 104. In other
embodiments, channel 108 can be implemented by a trans-
mission medium that is shared between many subsystems
104. In these and other embodiments, the medium can be any
combination of wired or wireless media, such as Ethernet or
Wireless LAN. In these and other embodiments, channel 108
can be implemented by various types and/or combinations of
public and private networks using proprietary protocols or
conventional protocols such as UDP or TCP. In embodiments,
data sent over communication channel 108 is encrypted, for
example using secure VPN, to improve security.

According to general aspects, in embodiments of the inven-
tion, remote management system 106 is responsible for man-
aging policies that can include lists of allowed devices as well
as their encryption keys. Based on these lists, and devices
attached to interfaces of computer 120, remote management
system 106 sends appropriate keys to subsystem 104 via
channel 108.

Control messages 114 sent from Remote Management
System 106 to one or more Secure /O Subsystems 104 con-
tain different configuration commands and settings such as
encryption keys to be described in more detail below. Status
messages 112 sent from one or more Secure [/O Subsystem
104 to Remote Management System 106 contain different
notifications and alerts. Example of status messages 112
include notifications of attached devices 110, and information
regarding attached devices 110 such as when the device was
connected and removed, who was logged in at the time the
device was attached, activity level (e.g. how much data was
read and/or written), etc.

Various aspects of a remote management system that can
be adapted for use in the present invention are described in
more detail in co-pending application Ser. No. 13/971,711,
the contents of which are incorporated herein by reference in
their entirety.

As mentioned previously, aspects of the invention include
providing security functionality over otherwise unsecure
communications. FIG. 2 shows an example of an existing
unsecure USB topology. As is known, USB allows a more
complex topology than certain other types of interfaces. In the
example shown in FIG. 2, a USB Host 202 is connected to
multiple USB Devices 210, including via USB Hubs 212.

FIG. 3 is a block diagram illustrating another example
management system 300 according to embodiments of the
invention. In this example, the system manages security of
two USB secure subsystems 304-1 and 304-2 connected to
Remote Management System 106 via respective communi-
cation channels 108-1 and 108-2.

US 9,076,003 B2

5

As can be seen in comparison to FIG. 2, the topology of the
system 300 is made secure by the inclusion of secure USB
subsystems 304, remote management system 106 and com-
munication channel 108.

As set forth above in connection with the more general
example of FIG. 1, secure USB subsystems 304 are respon-
sible for parsing and transparently encrypting or decrypting
data streams according to policies managed by remote system
106 and keys provided by remote system 106. In embodi-
ments such as that shown in FIG. 4A, subsystems 304 are
implemented on a chip that is included the same semiconduc-
tor device (e.g. SOC) or printed circuit board (PCB) 404-A as
USB Hosts 302. In this embodiment, unencrypted data is
securely communicated between subsystems 304 and USB
hosts 302 by virtue of subsystems 304 and hosts 302 being
inaccessible to third parties. For example, where 404-A is a
PCB, communication signals between subsystem can be bur-
ied inside PCB circuit traces. As further shown, subsystem
communicates encrypted data with a USB device 310 (e.g. a
physical storage device) that is external to PCB or SOC 404.

In alternative embodiments such as that shown in FIG. 4B,
USB Hosts 302, secure USB subsystems 304 and USB
devices 310 (e.g. a physical storage device such as an internal
Flash Drive) are all implemented together on a common PCB
404-B. In these embodiments, the encrypted communications
between subsystems 304 and devices 310 are even further
secured via signals on inaccessible PCB traces.

As shown in FIGS. 4A and 4B, USB devices 310 are
commonly implemented together with the associated hard-
ware, such as flash memory. Moreover, in embodiments
described in more detail below, software and hardware layers
above USB Hosts 302 are also inaccessible by third parties for
eavesdropping.

As further shown in FIG. 3, management system 300 man-
ages secure USB communications for four USB Hosts 302-1,
302-2,303-3 and 302-4, two USB Hubs 312-1 and 312-2, and
six USB devices 310-1 to 310-6 connected either directly to
the Secure USB Subsystems 304-1 and 304-2 or via USB
Hubs 312-1 and 312-2. As described above, USB Host 302-1
or 302-2 can be included in a variety of computing devices
including, but not limited to a server, a PC, or an embedded
device such as secure computer 120. In embodiments shown
in FIG. 3, subsystems 304 are included in separate secure
computers 320, but this is not necessary.

FIG. 5 is a block diagram illustrating an example manage-
ment system 500 for securing SATA communications accord-
ing to embodiments of the invention.

As shown, secure SATA subsystem 504 has upstream port
(s) coupled to SATA initiator 502 and downstream ports
coupled to SATA target 510-1 and SATA expander 530. SATA
expander 530 is further coupled to SATA targets 510-2 and
510-3.

As set forth above in connection with the more general
example of FIG. 1, secure SATA subsystem 504 is respon-
sible for parsing and transparently encrypting or decrypting
data streams according to policies managed by remote system
106 and keys provided by remote system 106. An example
architecture for securing SATA communications that can be
adapted for use in the present invention is described in more
detail in co-pending application Ser. No. 13/971,732, the
contents of which are incorporated herein by reference in
their entirety.

FIG. 6 is another view of a system for securing USB com-
munications according to embodiments of the invention, bro-
ken down into software and hardware layers involved in the
data flow.

10

15

20

25

30

35

40

45

50

55

60

65

6

In this example, the hardware device associated with USB
device 610 is a physical storage device 640, such as a hard
drive or thumb drive. USB Device 610 is responsible for
converting data carried by an industry-standard USB protocol
into a vendor-specific data format used by physical storage
device 640. USB Device 610 is connected to the secure sub-
system 604 via a connection 642 such as a USB cable. As
shown, subsystem 604 in this embodiment of the invention
implements an Encryption Layer. It performs transparent
encryption and decryption of the data passing between USB
host 602 and device 610.

As further shown in FIG. 6, in software layers above USB
host 602 are device driver 644 and file system 646. Examples
of File Systems are FAT32, NTFS, or ext4. Both USB Device
Driver 644 and File System 646 are unaware of the fact that
the data is encrypted.

In software layers above device driver 644 and file system
646 is operating system 648. Examples of Operating Systems
are Linux, Mac OS, Windows, Android, or iOS. Applications
650 are shown in software layers above operating system 648.

It should be noted that other 1/O types, such as SATA, etc.
have a similar hardware and software structure to the USB
structure shown in FIG. 6, and those skilled in the art will
understand how to implement the invention in such other I/O
types after being taught by the present disclosure.

FIG. 7 is a block diagram illustrating an example imple-
mentation of a Secure USB subsystem 604 according to
embodiments of the invention. In this example, although only
one is shown, subsystem 604 includes one or more instances
of USB Bridge Logic 702 coupled to system controller 704.

USB Bridge Logic 702 is connected between an upstream
port and a downstream port. The upstream port can be con-
nected to a USB host, either directly or via a USB hub. The
downstream port can be connected to one or more USB
devices, either directly or via a USB hub.

Configuration/control 720 lines are shown to illustrate
additional communications between system controller 704
and bridge logic 702 as should become apparent from the
following descriptions.

System controller 704 is implemented by a processor with
associated software and/or firmware, a FSM in ASIC/FPGA,
orany combination thereof. It receives policies and keys from
the management system 106 via control messages 114. In
response to messages of new devices being detected by any
USB bridge logic 702, perhaps after consulting local policies
or exchanging messages with management system 106, it
determines how the device should be configured for secure
use, if at all. It then provides any configuration information to
the associated bridge logic 702, perhaps also including an
encryption key.

FIG. 8 is a block diagram of one example implementation
of USB Bridge Logic 702 according to embodiments of the
invention.

In the example shown in FIG. 8, logic 702 includes USB
Receive Packet Parser 802-D (for downstream data) and
802-U (for upstream data), USB Link Controller 804, CRC
generator 806-D (for downstream data) and 806-U (for
upstream data), encryption module 808 (for downstream
data) and decryption module 810 (for upstream data), USB
transceiver controller 812-U (for coupling to upstream ports)
and 812-D (for coupling to downstream ports), USB device
table 814, encryption controller 816, encryption key cache
controller 818 and encryption keys 820.

USB Receive Packet Parser 802 (both upstream and down-
stream) is responsible for parsing received packets, decoding
packet headers, extracting information and passing it to the
Link Controller 804.

US 9,076,003 B2

7

In general, USB Link Controller 804 performs a variety of
functions for managing the passing of USB traffic between
upstream and downstream ports according to configurations
provided by system controller 704.

Using messages parsed by upstream packet parser 802-U,
USB Link Controller 404 detects direct attachment of a new
device to a downstream port, and also detects attachment of a
new device to one of the USB hubs connected to a down-
stream port. The latter is performed by monitoring hub port
change messages sent to the host.

Also using messages parsed by upstream packet parser
802-U, USB Link Controller 804 detects removal of a device
directly connected to a downstream port, and detects removal
of a device from one of the USB hubs connected to a down-
stream port. The latter is performed by monitoring hub port
change messages sent to the host.

When device attachment and removal is detected, USB
Link Controller 804 updates device table 814 and sends a
report to the system controller 704 via configuration/control
lines 720.

Alternatively, link controller 804 can raise an interrupt and
system controller 704 can read the contents of table 814.
System controller 704 can also poll the contents of table 814
at any time.

As mentioned above, using the information regarding
attached and removed devices, USB Link Controller 804
maintains table 814 of all connected devices. In embodi-
ments, table 814 lists up to 127 connected devices. For
example, USB Link Controller 804 parses descriptors during
device enumeration and extracts information such as device
class, vendor and product 1D, serial number and additional
identifying information. Accordingly, in embodiments, the
table 814 contains information about each attached device
including device address, endpoints, device class, manufac-
turer, and serial number.

In addition to the connected devices list in table 814, table
814 includes entries (32 in one example embodiment) that
lists the “allowed devices” that are allowed to connect, along
with their respective keys in keys storage 820. When a new
device connects (for the first time) the link controller 804 will
query the system controller 704 if this device can send/receive
data to/from the host CPU. If it can, then the system controller
704 will provide the appropriate key for that device (possibly
after it obtained it from the remote management system 106)
and that device with its key in store 820 will be entered into
the “allowed devices” portion of table 814. When this device
connects again, its ID will already be entered in the table
(along with its key) and will be allowed to connect right away.

In embodiments, the connected devices portion of table
814 is like a cache (e.g. a software managed cache). If it fills
up, and a new device connects, then one of the older entries
needs to be deleted. Also, any entry can be deleted at any time.
Note that each secure USB device has its own associated key,
controlled by the remote management system 106. So, for
example, if one user writes an encrypted file to a USB drive
and gives that same drive to another user to insert and read on
his secure computer, then the remote management system
106 can determine if the other user has privileges to read that
device (based on who accessed it last, worker’s security level
or group belonging, etc.). If the second user does have the
requisite privileges, then system 106 sends the second secure
computer device’s key so he/she can access the device’s data.

In response to reports of newly attached devices, system
controller 704 provides configuration information to USB
Link Controller 804. This information can include whether to
encrypt communications to the device. This configuration
information can also be maintained in table 814.

10

15

20

25

30

35

40

45

50

55

60

65

8

Encryption key cache controller 818 includes logic for
managing encryption keys 820. For example, when a device
has been configured for encrypted communications, system
controller 704 may further provide an encryption key to use
forthat device. Encryption key cache controller 818 stores the
encryption key in store 820 and associates it with the config-
ured device. USB Link Controller 804 also includes logic for
holding oft USB traffic during the process of receiving an
encryption key.

It should be noted that, although shown separately in FIG.
8, encryption controller 816 and encryption key cache con-
troller 818 may be implemented together with link controller
804, for example as firmware executing on a common con-
troller. Those skilled in the art will be able to understand how
to implement the functionality of the various blocks in FIG. 8
using any combination of hardware, software, firmware, etc.
after being taught by the present disclosure.

In response to packets being received on an upstream port
and being destined for a device for which encryption is con-
figured, USB Link Controller 804 enables payload encryp-
tion in the downstream direction by controlling mux 818-D.

Inresponse to packets being received on a downstream port
and being originated from a device for which encryption is
configured, USB Link Controller 804 enables payload
decryption in the upstream direction by controlling mux 818-
U.

As is known, all USB packets include a 16-bit CRC value
based on the payload contents. This value is no longer valid if
packets are encrypted. Accordingly, Cyclic Redundancy
Check (CRC) generator module 806 (for both upstream and
downstream directions) generates a new CRC value for all
modified USB packets inserted by the Link Controller 804.

Encryption module 808 encrypts the payload inside USB
packets using the appropriate key stored for a device in 820
before passing the packet to the downstream USB device.
USB Link Controller 804 decides which packets require
encryption and controls mux 818-D and encryption controller
816 appropriately.

Decryption module 810 decrypts payload inside USB
packets using the appropriate key stored in 820 for the device
before passing the packet to the upstream USB host. USB
Link Controller 804 decides which packets require decryp-
tion and controls mux 418-U and encryption controller 816
appropriately.

USB Transceiver controller 812 implements interface
logic to the USB Phy. Depending on implementation, the
USB Phy may be internal or external to the secure USB
subsystem.

Additional aspects of encryption and decryption per-
formed by modules 808, 810, 816 and 818 according to
example embodiments of the invention will be described in
more detail in connection with FIG. 9. More particularly, F1G.
9 is a block diagram illustrating encryption controller 816,
encryption key cache controller 818 and encryption/decryp-
tion modules 808/810 in alternative detail.

As shown, in response to signals from link controller 804,
encryption controller provides an Initialization Vector (IV)
and control signals to encryption/decryption modules 808/
810.

Encryption key cache 820 stores previously used encryp-
tion keys in order to reduce data encryption/decryption
latency. The cache can be implemented using FPGA or ASIC
embedded memory. Encryption key cache controller 818
interfaces with the system controller 704 to manage encryp-
tion keys provided by the remote management system 106
and to provide status messages containing a current state of
cache 820.

US 9,076,003 B2

9

In embodiments, cache 820 contains both the key and
properties for the USB device 610 associated with the key,
such as USB-assigned address, device class, and serial num-
ber that uniquely identify the device.

FIG. 10 is a block diagram further illustrating an example
implementation of encryption controller 816 and encryption/
decryption module 808/810 for USB storage devices accord-
ing to embodiments of the invention. In this example embodi-
ment, the encryption layer of the invention uses an AES 128
encryption algorithm in streaming mode.

In this example embodiment, in addition to parameters
obtained from the device and the location of the data to be
encrypted, control signals sent by encryption controller 816
include information that uniquely identifies the device 610,
but it does not come from the device itself. It is provided by
the remote management system 106 instead. The reason for
that is improved security. For example, even if somebody is
able to reverse-engineer the key generation algorithm, and
retrieve the additional values for control signals LUN, LBA,
Serial Number and block offset from the device 610, the seed
will still be missing.

Key generation module 1052 receives the device serial
number, Logical Unit Number (LUN), Logical Block
Address (LBA), block offset, and seed as inputs from con-
troller 816 and generates a key for AES128 encryption mod-
ule 1054. Key size can be 128, 196, 256, or any other size,
depending on the desired security level.

AES128 1054 is an encryption block that generates a
streaming key using the unique Initial Vector (IV) and the key
generated by module 1052.

As further shown in the example of FIG. 10, control signals
from controller 816 include an Encryption Enable input to the
multiplexer 1058 which causes it to select between ‘0° (no
encryption), or a portion N of the 128-bit streaming key,
depending on the data width.

Encryption controller 816 interfaces with the I/O Link
Controller 804, and performs overall control of the data
encryption/decryption. As described above, Link Controller
804 provides all the necessary signals that allow determining
whether a packet needs encryption/decryption, and packet
boundaries.

Encryption and decryption blocks 808 and 810 are sym-
metric: both use the same encryption key.

FIG. 10 depicts an AES algorithm in stream cipher mode.
However, it should be noted that in alternative embodiments,
the Encryption Layer of the invention can be implemented
using block cipher mode. The differences are the way Key
Generation, and AES 128 blocks are connected. Each
mode—block cipher and stream cipher—have advantages
and drawbacks. Block cipher requires data in units of 512
Bytes for encryption. That introduces latency on the 10O data-
path. On the other hand, stream cipher can work with any data
units, even as small as 1 Byte. Stream cipher has lower
latency, but is considered less cryptographically strong.

It should be further noted that other encryption algorithms
besides AES may be deployed in alternative embodiments.
For example, DES, 3DES, etc. . . . or proprietary algorithms
(such that may be used by military, defense department, etc.)
may be used.

FIG. 11 illustrates an example encryption process accord-
ing to embodiments of the invention. More particularly, FIG.
11 shows an example packet 1102 before encryption and after
encryption 1104. As shown, packets 1102 and 1104 each
include Header 1106, Payload 1108 and CRC 1110. Link
controller 804 detects the boundaries of header 1106, payload
1108 and CRC 1110 from the receive and transmit packet
parsers and controls the operation of encryption module 808

10

15

20

25

30

35

40

45

50

55

60

65

10

and CRC generator 806 based on the detected boundaries.
When activated by link controller 804, encryption module
808 is responsible for encrypting the original payload 1108-A
into encrypted payload 1108-B, while leaving the original
header 1106 intact. When activated by link controller 804,
CRC Generation module 806 performing CRC recalculation
such that original CRC 1110-A is changed to CRC 1110-B
based on the changed contents of encrypted payload 1108-B.
FIG. 12 depicts ablock diagram of an encryption process in
AES128 block mode. The difference from the streaming
mode shown in FIG. 10 is that the AES 128 module encrypts
original data directly, not the key.
Those skilled in the art will appreciate how the reciprocal
process of decryption is performed based on the foregoing
example description of the encryption process.
Although the present invention has been particularly
described with reference to the preferred embodiments
thereof, it should be readily apparent to those of ordinary skill
in the art that changes and modifications in the form and
details may be made without departing from the spirit and
scope of the invention. Itis intended that the appended claims
encompass such changes and modifications.
What is claimed is:
1. A system for transparently encrypting and decrypting
computer system 1/O data, comprising:
an /O interface;
a host processor including a host for sending and receiving
data via the I/O interface;
a secure subsystem interposed between the /O interface
and the host processor that transparently encrypts and
decrypts the data, the secure subsystem including:
bridge logic coupled to intercept the data and to detect
new devices connected to the I/O interface, and

a controller that receives information about a new device
connected to the [/O interface from the bridge logic
and configures the bridge logic for encrypting and
decrypting the intercepted data in accordance with the
information.

2. A system according to claim 1, wherein the I/O interface
comprises one of USB, SAS, SATA, Firewire, Hypertrans-
port, and Thunderbolt.

3. A system according to claim 1, wherein the controller
that further determines what data communicated with the new
device to encrypt.

4. A system according to claim 3, wherein the controller
further determines start and end boundaries of data to be
encrypted or decrypted.

5. A system according to claim 1, wherein the secure sub-
system includes a CRC generator that recalculates a CRC
after packet payload is encrypted or decrypted.

6. A system according to claim 1, wherein the secure sub-
system includes an encryption cache controller that stores and
manages previously used encryption keys.

7. A system according to claim 1, wherein the secure sub-
system maintains a table of all connected 1/O devices.

8. A system according to claim 7, wherein the table con-
tains all the information about the devices sufficient for their
unique identification, including one or more of device
address, device class, device manufacturer, endpoints, and
serial number.

9. A system according to claim 1, wherein the host proces-
sor and the secure subsystem are incorporated together on a
common printed circuit board (PCB) and coupled together
via PCB traces.

10. A system according to claim 1, wherein the host pro-
cessor and the secure subsystem are incorporated together in
a single system on a chip (SOC).

US 9,076,003 B2

11

11. A system according to claim 1, wherein the controller
further configures the bridge logic in accordance with a local
security policy.

12. A system according to claim 1, wherein the controller
further configures the bridge logic in accordance with control
messages from a remote management system.

13. A method of transparently encrypting and decrypting
computer system 1/O data, comprising:

receiving one or both of an encryption key and a seed for a

specific /O device;

receiving data from an [/O interface, wherein the data is

sent from or Intended to be received by a host processor
including a host for the I/O interface; and

interposing a secure subsystem between the 1/O interface

and the host processor that transparently, from the stand-
point of the host, encrypts and decrypts the data using
one or both of the encryption key and the seed, wherein
one or both of the encryption key and seed is received
from a remote management system.

14. A method according to claim 13, wherein one or both of
the encryption key and the seed is stored in a local cache.

15. A method according to claim 13, further comprising
sending a current state of the connected 1/O devices to the
remote management system.

16. A method according to claim 13, wherein encrypting
includes using one or both of stream and block ciphers.

17. A method according to claim 13, wherein encrypting
uses one or more of a unique serial number of the device, and
a unique address that identifies a data block.

5

10

20

12

18. A method according to claim 13, wherein the secure
subsystem transparently encrypts and decrypts the data using
the seed and the seed is received from the remote manage-
ment system.

19. A method, comprising:

encrypting data stored on a peripheral device by a first

computer using an encryption key;

detecting an attachment of the peripheral device to a sec-

ond computer;

sending information about the peripheral device to a

remote management system via a network in response to
the attachment;

receiving the encryption key at the second computer; and

decrypting the data stored on the peripheral device at the

second computer using the received encryption key.

20. A method according to claim 19, wherein the informa-
tion includes one or more of device address, device class,
device manufacturer, endpoints, and serial number.

21. A method according to claim 19, wherein the receiving
step is performed only if a user associated with the second
computer is authorized by the remote management system.

22. A method according to claim 19, wherein the encrypt-
ing and decrypting are performed transparently to peripheral
hosts respectively associated with the first and second com-
puters.

